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Customizable Simulation Code !
!
 
 
 
 
Initial stages of the project consisted of programming a custom N-body simulator in 
MATLAB using a 4th order Runge-Kutta method of integration to solve Newton’s 
equation of motion (where d=|r| is the distance between two bodies): 

 
 

Determining Validity of the Model!
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In Predicting Synchronization, Is Less More? !

Satellite formation, rings, 
spiral arms and more 
could be described by 
synchronization models. 

The Kuramoto Model as Motivator 
 
 

dθi

dt
=ωi +

Κ
Ν

sin(θ j −θi )
j=1

N

∑

Future Work!
!
Our current goal is code optimization and implementation of our custom nonlinear 
model. In addition, we will continue refining the code and adding complexity, such as: 
 

•  Special treatment of collision dynamics 
•  Generalization to three dimensions 
•  Conversion to polar and spherical coordinates to track phase angles  
•  Expansion to large N simulations  

o  Applications to galactic spiral arms or planetary formation 
o  Ring formation around massive planets	
  

Creatures and objects that behave 
cyclically can begin out of step  

and then synchronize. 
Example: the blinking of fireflies 

(Pteroptyx cribellata, Pteroptyx malaccae) 
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Plot showing, as proof of concept, inner 
planet distances from the sun over 3 
years. Each planet's total distance 
oscillates about its mean. This plot does 
not show synchronization, as expected. 
 
 
(Note: all 8 planets and the sun were 
simulated, but only four were plotted to 
avoid problems of scale. ) 
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Lightning bugs in York, PA, Flickr user 
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A New Nonlinear Model of Interaction!
!
We are currently working to adapt the code to use a new differential equation for the 
changes in orbital speed of a collection of many bodies around a much larger body—
for example, a dust ring around a planet. This equation will be reminiscent of the 
Kuramoto model: 
 
 
 
 
The influence of gravity as the “communicating force” is seen in the presence of G and 
R3. Other features include: 
•  K: a scaling constant, as in the Kuramoto model  
•  ρ: the angular density of bodies in the orbit 
•  Nonlinear status from sine function in the denominator (due to the geometry of 

separation of any two bodies) 
•  Use of an integral in lieu of a sum, consistent with large N 

Step 1: build N-body simulation based on traditional model. 
Step 2: modify simulation to use custom mathematical model. 

With modification, the Kuramoto model can 
give rise to “chimera states”, in which some 
fraction of the oscillators synchronize. These 
can appear as clusters or spirals of synchronized 
oscillators, which may suggest astronomical 
objects like galaxies.!

The Kuramoto model describes the frequency 
of oscillations of coupled, non-linear oscillators. 
The natural frequency of a body or oscillator is 
affected by all other objects in the system2.  
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Plot showing the simulation of 20 
bodies (m=1024 kg) at 0.5 AU from the 
host planet (m=1026 kg). Initial positions 
are randomly generated. 
 
In this example, no collisions or 
synchronization occur due to relative 
sparseness of body distribution. 

The example plots from the N-body 
simulator show orbital radius over time, 
but to evaluate our nonlinear model, we 
will instead track the phase angle of 
each oscillator, as in the plot in the 
“Motivation” section.  
 
If our model is reasonable, we expect to 
see something closer to the plot at right, 
which shows phase synchronization of 
all the objects. This could be the 
formation of a moon; multiple clusters 
could represent other regular structures 
such as spiral arms. 
	
   Synchronization can also be checked by 

plotting the order parameter R, which 
roughly corresponds to strength of 
clustering. R=1 is perfect synchronization. 
The plot at left is an example for a system 
obeying the Kuramoto model. 
 
•  Red line: a strongly coupled system 

quickly synchronizes.  
•  Blue line: in a weakly coupled system, 

objects synchronize rarely or not at all.  
 
Future results matching the red line more 
closely would support our model. 
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Synchronization in two- and three- body astrophysical systems is well understood using 
the tools of classical mechanics1. With more than three bodies, analytical solutions 
become nearly impossible, and numerical experiments require enormous computational 
resources. We explore the possibility of using a non-conservative model, with the goal of 
faster computation and simpler analytical solutions. We focus on many-body dissipative 
systems such as circumplanetary discs of dust.!
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All objects in the system affect 
each other through different types 
of forces, represented by the 
constant K in the equation. The 
strength of the effects leads to 
clustering of various tightness, as 
shown in the plot at right. 
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